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Time-Domain Simulation of n Coupled
Transmission Lines

FABIO ROMEO AND MAURO SANTOMAURO, MEMBER, IEEE

Abstract —In this paper, a general SPICE model for n coupled trans-
mission lines is presented. The model consists of two identical transforma-
tion networks and » single-transmission-line models. The transformation
networks are realized with linear time-invariant voltage-controlled voltage
sources (VCVS’s) and current-controlled current sources (CCCS’s) only. A
simplified model designed to simulate connections on multilayer printed
circuit boards is also presented. In this case, the coupling model is
adequately described by a capacitance matrix C and an inductance matrix
L that are Toeplitz, symmetric, and tridiagonal. The particular structure of
C and L makes the computation of the parameters of the transformation
network extremely easy and efficient because only simple function evalua-
tions (cosines) are required. Furthermore, the transformation network
depends only on the number of coupled lines and not on the parameters of
those lines. Therefore, a library of such models needs to be determined
only once, and only the characteristic impedances and time delays for the
single lines have to be recomputed. The simulation results have been
compared against experimental results, and the difference between the two
is less than 1 percent.

I. INTRODUCTION

N THE RANGE of frequencies allowed by actual in-

tegrated devices, a connection only a few inches long has
a significant influence on the quality of signal to be
transmitted. In particular, connections behave like trans-
mission lines; hence, phenomena such as reflections, im-
pedance matching, and cross-coupling have to be consid-
ered when a connection is to be designed.

Simulators such as SPICE [1] can be used to analyze
circuits (devices and connections), but while the set of
models for devices is rather complete, the set of models for
transmission lines is limited. In particular, only the single-
line ideal model is available [2], [3] in most circuit simula-
tors.

While the extension of the single-line model to two
coupled lines is fairly simple, the generalization to more
than two coupled lines is not straightforward. This topic
has been addressed by several authors [2], [4]-[7] and
different simulation models were presented. All of these
models require the use of particular circuit models not
allowed in general-purpose: circuit simulators such as
SPICE. Only recently in [8], a SPICE model for multiple
coupled transmission lines has been presented.

The aim of this paper is to derive from the general
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model a simplified one that can be used in a particular but
rather common setting. The parameters of this latter model
are computed in a very efficient way that requires only
simple transcendental function evaluations, as opposed to
the computation of eigenvalues and eigenvectors that are
necessary in the most general setting. Furthermore, the
assumptions that have to be verified for the simplified
model to be as accurate as the general one are commonly
satisfied when microstrip lines on multilayer printed cir-
cuit board are considered.

The paper is organized as follows. First, a mathematical
formulation of the general problem is given. Then, the
simplified model is described, the limiting assumptions are
introduced, and an algorithm to determine the model
parameters is presented. Finally, a comparison between
waveforms recorded on a real circuit and those determined
by using SPICE with the simplified model is presented in
the last section of the paper.

II. MATHEMATICAL FORMULATION

Let us consider a set of n coupled, lossless transmission
lines. With the assumption of the transverse electromag-
netic (TEM) mode of wave propagation, the distribution of
voltages and currents along the lines is given by the
generalized telegraphists’ equations [9)

v*(x,1) ___[0 L1 v(x,t) 1)
i*(x,1t) C 0li(x,1)
where vectors v(x, t) and i(x, t) denote voltages and cur-
rents, respectively. Superscripts x and ¢ denote differentia-
tion of signals with respect to space and time, respectively.

Distance and time are denoted by x and 7. L =[], ] is the
per-unit-length (PUL) inductance matrix and

‘11 — G2 —C1n
— (1 €22 T Cy

C— . . .
TCip Tl Cnm

is the PUL capacitance matrix. The matrix C is symmetric,
diagonally dominant, positive definite [10] and such that

€ i=Cpot Z (cz,j)
i=1
1%

where c, , is the capacitance PUL of line i with respect to
ground, and ¢, , is the capacitance PUL between line i

0018-9480/87 /0200-0131$01.00 ©1987 IEEE



132 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 2, FEBRUARY 1987

@ @
——0
@ TRANSFORMATION SINGLE TRANSFORMATION @
o—>— —<—o
: : ISSION : :
i lof! g, fod) - TRANSH W N0}
VeI ' L <Gty
® NETWORK Vg o LINES Y NETWORK : @)V.(l.f)
o0—>»— | <0
l J\ —
GND
Fig. 1. Structure of the model for n coupled lines.
and line j. The matrix L is symmetric and positive defi- vs, lot) o Ve (L0
d, 4
nite, with /, , the self-inductance PUL of line i and /, , the o L

mutual 1nductance PUL between line i and line j.

Given a set of coupled lines, e.g., a set of microstrips on
a printed circuit board, the entries of matrices L and C
can be numerically computed once the geometries of the
lines and the dielectric constant of the inhomogeneous
coupling material are given and the TEM mode is as-
sumed. Algorithms to compute these parameters are well
known and examples can be found in [11]-13].

In the cases of common interest, e.g., connections on
printed circuit boards, the nature of the media in which
the transmission lines are embedded is such that the mag-
netic properties are not dependent on the type of dielectric
used and are equivalent to those obtained when the dielec-
tric is replaced by a vacuum. Bearing this in mind, the
values of the entries of matrix L are computed by means
of the following relation [5]:

L=Ly=pee 5"

where C, is the capacitance matrix for the same set of
transmission lines with the dielectric replaced by a vacuum.

Let us consider now the following change of basis from
v to v; and from i to i

(2a)
(2b)

= MVUd
i=M,i,

where M, and M, are n by n constant matrices.
Substituting (2) into (1), we obtain

vi(x,t) | _ [0 L] vi(x,0)
["3("”)]- [Cd OHI'Q(XJ)} ©

where L, and C, are given by
(42)

(4b)

=M;'LM,
C,=M;'CM,.

Due to the particular structure of the physical problem, a
number of results can be proven.

Proposition 1: Matrices LC and CL share the same
eigenvalues A (i =1,2,- - -, n). The corresponding right ei-
genvector matrices, M, and M,, satisfy the following
equation:

M;'= ML (s)

v, Lt

, td,
>vdi(l,t) 1s, L)

GND
Fig. 2. Detailed model for the ith line.

/__\

Matrices C,, L, (LC),, and (CL), given by

C,= MICM,, (6a)
L,=M;'L[M;']" (6b)
(LC)d=M;1L[MI;1]TM$CMV=LdCd (6¢)
(CL)a=MICM,M;'L[MY] " =C,L,  (6d)

are diagonal in the new basis obtained by (2).
Proof: A proof of (5) is given by Chang [5], while egs.
(6) follow trivially from {(4) and (5). |
The change of basis represented by (2) is the generaliza-
tion of the even-mode and odd-mode decomposition to the
case in which »n coupled lines are considered. Equation (3)
represents a set of n decoupled lines. Each of the lines
propagates one and only one of the n propagation modes
of the system of (1). The time-delay matrix is given by

12
w,=(L,C,) / (7a)
while the characteristic impedance matrix is given by

Z,= (LdCd)l/ZCd_l' (7b)

All the matrices in (7) are diagonal and this makes the
computation of square roots and inverses trivial. More-
over, since both W, and Z, are diagonal matrices, the set
of n coupled lines can be represented by » single lines
with parameters W, and Z, and simulated using the
single-line SPICE model. The change of basis is realized by
two transformation networks, one at each end of the
transmission lines model; these networks are identical
because of (5).

The structure of the circuit model for » coupled lines is
shown in Fig. 1, while Fig. 2 presents the detailed model
for the ith line. The parameters for the circuit are obtained
by the following algorithm:

Algorithm:

Step 1: Given the number of lines »n, compute the

eigenvalues of matrix LC, X,.
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Step 2: Compute the matrix M, =|

genvectors of LC.

i=0.

i=i+1; compute the control law for each

dependent source of the transformation net-

work (see Fig. 2):

n
Us,(x’ 1) = Z M,
j=1

M;;] of right ei-

Step 3:
Step 4:

vg,(x,1) (8a)

jYa (%, 1) —

is,.(x’ t) = Z Mijia’/(x’ t)_ id,(x’ t) (8b)
i=1

where either x =0 or x =,/ being the length

of the line.

Compute the characteristic impedance Z, and

the time delay per unit length W, of the ith

line by (7).

if i <n go to Step 4; else stop.

Step 5:

Step 6: .
Equations (8) define the control laws for the VCVS and
CCCS that implement the transformation network.

III.

To compute the transformation networks and the
parameters of the system of n coupled transmission lines,
the eigenvalues and the right eigenvectors of matrices LC
and CL have to be computed. The complexity of the
computation necessary to determine the model can be
greatly reduced if a set of assumptions on the structure of
the coupled lines is satisfied.

Assumption 1: The characteristics of the medium are
such that both the capacitance matrix C and the induc-
tance matrix L are n-by-n tridiagonal matrices, where n is
the number of coupled lines. |

Assumption 1 introduces a constraint on the characteris-
tics of the coupling phenomenon. In fact, the tridiagonal
structure of the matrices implies that each transmission
line is coupled directly only with the closest one to the
right and with the closest one to the left. This assumption
is valid in a wide variety of practical cases, in particular
when the transmission lines are microstrips on a multilayer
printed circuit board where every signal plane is sand-
wiched between two ac ground planes. Obviously, boundary
effects are present and, in pasticular, the capacitance of
the extreme transmission lines is smaller than those of the
others.

Assumption 2: The lines are identical and equally spaced
and side effects are negligible, ! ie.,

SIMPLIFIED MODEL

¢,i=¢, i=1,--+,n

l,=1, i=1,---,n

i i = Coms j=i-1,i+1, i=2,---,n—1
€12 Chn-1%Cn

L, =1, j=i~-1,i+1, i=2,--- n—1
ha=ly a1~

*If microstrip lines on multilayer printed circuit board are considered,
the capacity of each line with respect to ground is about one order of
magnitude bigger than the capacity between lines; therefore, side effects
can be neglected.
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These assumptions imply that both L and C are tridiag-
onal and symmetric Toeplitz matrices. Matrices of this
form have a set of very interesting properties that allow the
eigenvalues and the eigenvectors to be determined in an
efficient manner that requires only cosine function evalua-
tions.

All the required results related to Toeplitz matrices will
be presented as propositions. Proofs will be omitted
whenever a direct reference is available.

Proposition 2: Let T be a matrix of order n defined as
follows:

t,;=1,  Jj=i=li+l, i=2-,n-1 (%)
o=ty n1=1 (9b)
t;, =0, otherwise. (9¢)

The characteristic polynomial of T, ¢,( y), is given by the
following recursive equation:

$(p) =poe_1 (1) = ¢ (p), k=2,--+,n (10)
with the initial conditions ‘

do(p) =1 (11a)

$1(p) =p. (11b)

Proof: A proof of the proposition is given in [14].
The particular structure of T, given by (9) allows for the
computation of its eigenvalues without solving the char-
acteristic equation

det(AI—T)=¢,(p) =0

as stated in the following proposition.
Proposition 3: The solutions to the equation

$u(n) =0
where ¢,(p) is given by (10) and (11), are given by
il 12
n+l’ (12)
Proof: A proof of the proposition is given in [15]. ®

Matrix T plays a crucial role in determining the eigen-
values of Toeplitz matrices that are also symmetric and
tridiagonal.

Proposition 4: Let A be a symmetric, tridiagonal Toep-
litz matrix. The eigenvalues of A are given by

A(4)=a+p(T)b (13)

where a is the element on the main diagonal of 4, b is the
element on the secondary diagonal of 4, and p,(T') are the
eigenvalues of matrix T.

Proof: The proof consists of showing that the eigen-
values of 4 can be expressed as in (13). Let us consider the
following expression for 4:

A=1Ia+Tb.

Writing the characteristic equation for 4, we obtain

det(AI — A) =det((A—a)I—bT) =0.

p;=—2cos i=1,---,n.

(14)
Since by assumption

b+0
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by the properties of determinants, (14) can be rewritten as

(A-a)
b

bdet( I—T)=0

from which (13) follows immediately. [

Proposition 4 states that eigenvalues of every symmetric,
tridiagonal Toeplitz matrix can be computed starting from
the eigenvalues of matrix T by evaluation of (13). Further-
more, solutions of the characteristic equation have to be
computed only once for all matrices of a given order.

The particular features of tridiagonal, symmetric Toep-
litz forms are again helpful in the computation of eigen-
vectors necessary to diagonalize a matrix.

Proposition 5: The matrix M of right eigenvectors of T
is given by

T
M, = ———¢l 1(,(T) i,j=1,--,n (15a)
Y
where the normalizing factors
= 2
szz Z (¢l—1(’1’j(T))) (15b)
i=1
are introduced to obtain
2 MEi=1. (15¢)
i=1

Proof: A proof of the proposition is given in [14].
Proposition 6: Matrices 4 and T have the same eigen-
vectors.
Proof: Let x be a right eigenvector of 4. From the
definition of eigenvector and from Proposition 4 follows

A—a
()\I—A)x=b(( 5 )I—T)x=0.
Therefore
(pI-T)x=0
which completes the proof. ]

Propositions 5 and 6 are crucial because they state two
extremely important facts. The first one is that, given a
matrix that is symmetric, tridiagonal, and Toeplitz, the
eigenvector matrix M can be determined without solving
any system of equations. The second is that the transfor-
mation matrix is related only to the order of the matrix to
be transformed and not to values of its nonzero elements.
From this latter remark follows the useful result below.

Proposition 7: Since L and C are symmetric, tridiago-
nal, Toeplitz matrices, the same transformation matrix M
diagonalizes both L and C; as a consequence, it follows
that

M7'ULMM~'CM = M~'LCM

and then M diagonalizes LC also.
Proof: The proof follows immediately from Proposi-
tion 6. |

The algorithm described in Section II is now simplified
as follows:

Simplified Algorithm:

Step 1: Given the number of lines n, compute the

eigenvalues of T by (12).

Step 2: Compute the matrix M of right eigenvectors
of T by (15).
Step 3: i=0.
Step 4: i=i+1; compute the control law for each
dependent source (see fig. 2)
0, (x,1) = X Moy (,0)= 0, (x,1) (162)
j=1
i (x,1)= ¥y M,jidj(x,t)—id’(x,t) (16b)
=1
where either x =0 or x =/,[ being the length
of the line.
Step 5: Compute the characteristic impedance Z, and
the time delay W, of line i
Zy=|—7F+7 17
“~ = (Te, (17)
Wo, =1+ p(D)1,)(c=p,(T)e,)]% (7b)

Step 6: if i <n go to Step 4; else stop.

Remark 1: The computation of Step 1 and of Step 2
depends only on the number of lines and so is executed
only once; as a consequence, the model for different sets
of n lines requires the computation of Step 5 only.

Remark 2: 1f n=2, the model presented here reduces
to the usual model for two coupled lines. In particular, the
odd mode is propagated by the first line while the even
mode is propagated by the second one. It is important to
note that in this case Assumption 1 and Assumption 2
have no effect since both lines are boundary lines and
hence no approximation is used. [ |

Parameters /, /,, ¢, and c,, have to be determined either
by measurements® or by computations starting from the
geometrical dimension of the lines. For the sake of simplic-
ity, the second approach has been followed.

A computer program to evaluate electrical parameters
and to determine the model of coupled lines based on the
above Simplified Algorithm has been designed. The pro-
gram computes /, {,,, ¢, and c,, starting from the geometri-
cal dimensions of the microstrip lines using the algorithms
presented in [11], and [12]. Then, the transmission-line
parameters W, , Z, , and the transformation networks are
computed with (16) and (17). The output is generated
using the SPICE input syntax and it is stored in a file as a
SPICE subcircuit model.

2The procedure is rather delicate since the measurements are error-
prone.
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Fig. 3. Circuit example.

s=0.44mm
w=0.19 mm
t=0.06 mm
! h=0.41 mm
=210 mm-
€= 46€g

Fig. 4. Geometry of three coupled lines.

IV. EXAMPLE OF APPLICATION

The model presented in the previous section has been
applied to study three coupled lines on a multilayer printed
circuit board. The circuit, shown in Fig. 3, represents a
simplified version of a data bus. In Fig. 4 the geometrlcal
characteristics of microstrips are listed.

The simplified model was simulated with SPICE and the

results were compared with two photographs taken with a
500-MHz oscilloscope. Figs. 5 and 6 show simulated and
measured node voltages v,(¢) and v,(¢) when a rising step
(a) and a falling step (b) are applied by the voltage source
Vin- ' ' ~
The agreement between the measured and simulated
voltages is very good; the maximum difference between the
two voltages is less than 1 percent. The time required to
simulate the circuit was about 20 min of CPU time on a
Honeywell L 66,/80 computer for each transient, while the
time required to determine the model parameters was less
than 1 s.

A comment is in order with respect to HSPICE [16], the
particular version of SPICE used to perform the simula-
tion. When a transmission line is simulated in the time
domain, if the line is not perfectly matched at both ends
reflection waves are generated every W, time units. Since
the transmlssmn line is lossless, no distortion or attenua-
tion is introduced; this means that if the input signal
presents a break point® another one will be created every
time a reflection occurs. As a consequence, the resulting
time step can be extremely small. This effect is even more
evident when coupled lines are simulated. In this case,
every line has its own W,; hence, in géneral, break points
occur at different times for each line. To handle these
problems, HSPICE has a modified algorithm to control the
generation of break points and the computation of the
time step in the vicinity of break points [17]. In particular,
when transmission lines are simulated, only a limited num-

3A break point is a time point in which a waveform undergoes a sharp
change in its first time derivative. In coincidence with such points, SPICE
reduces its time step so that the next time step will bé coincident with the
break point [1].
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ber of reflections are considered for the generation of
break points. Furthermore, the minimum time step around
the break point is controlled adaptively by the user so that
a good tradeoff between accuracy and speed is achieved.
Several runs were performed to test the accuracy of the

-simulation with different time step control strategies and

no significant differences in the waveform were detected.
In contrast, several CPU hours were required, to complete
the simulation of the same test -case with the standard
control strategy.

Finally, the measured values of capac1tances c; and ¢;;
with i # j, i, j=1,2,3, are presented below together with
the correspondmg computed values (listed in parentheses)

o —c10+c12—68 8pF/m  (68. 6pF/m)
cp=Cp+cytcep=755pF/m  (76.6 pF/m)

C33=C3+ ¢y =68.8pF/m  (68.6 pF/m)
12=Cn=Cyp=Cp=67pF/m (8.0 pF/m).

The measured values of the capacitances were obtained by
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Fig. 6.  Node voltages obtained by measurements.

solving the following system of equations:
CrptCn=cy,
cpteytepn=cy,
€ —¢p=0
where ¢ », 1 the capacitance measured at one end of line 1
when line 2 is grounded, and ¢ M, is the capacitance
measured at one end of line 2 when both line 1 and line 3
are grounded. The computed values of capacitances were
determined by means of the program described at the énd
of the previous section. The results show an order of
magnitude of difference between ¢;, and c,;, i # j, which
proves that Assumption 2 is fulfilled to a good approxima-
tion. ‘
A number of tests are presently in progress to check the
agreement between the results predicted by the program

and measurements for an extended range of microstrip
dimensions.

V. CONCLUSIONS

A simplified simulation model for a set of coupled lines
has been presented. The construction of the model is based
on two assumptions on the characteristics of the coupling

phenomenon. The assumptions are usually satisfied for
microstrip lines constructed on multilayer printed circuit
boards.

To determine the model parameters, only function
evaluations are required. The transformation networks
necessary at both ends of the model are dependent on the
number of coupled lines only and can be determined once.
Only two parameters for each line have to be computed to
simulate sets of coupled lines with different parameters.

The test case presented shows good agreement between
the results obtained with the simulation and those ob-
tained by testing a real circuit with a high-resolution
oscilloscope. The errors in voltages were less than 1 per-
cent,
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