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Abstract —In this paper, a generaf SPICE model for n coupled trans-

mission lines is presented. The model consists of two identicaf transforma-

tion networks and n single-transmission-line models. The transformation

networks are realized with linear time-invariant voltage-controlled voltage

sources (VCVS’S) and current-controlled current sources (CCCS’S) only. A
simplified model designed to simulate connections on multilayer printed
circuit boards is also presented. In this case, the coupling model is
adequately described by a capacitance matrix C and an inductance matrix
L that are Toeplitz, symmetric, and tridfagomd. Tke particular structure of

C and L makes the computation of the parameters of the transformation
network extremely easy and efficient becanse only simple fnnetion evahsa-

tions (cosines) are required. Furthermore, tbe transformation network

depends only on the mrmber of conpled fines and not on tke parameters of

those lines. Therefore, a fibrary of such models needs to be determined

only once, and only the characteristic impedances and time delays for the

single lines have to be recomputed. The sbtndation results kave been

compared against expimentaf results, and the difference between the two
is less than 1 percent.

I. INTRODUCTION

I
NTHE RANGE of frequencies allowed by actual in-

tegrated devices, a connection only a few inches long has

a significant influence on the quality of signal to be

transmitted. In particular, connections behave like trans-

mission lines; hence, phenomena such as reflections, im-

pedance matching, and cross-coupling have to be consid-

ered when a connection is to be designed.

Simulators such as SPICE [1] can be used to analyze

circuits (devices and connections), but while the set of

models for devices is rather complete, the set of models for

transmission lines is limited. In particular, only the single-

line ideal model is available [2], [3] in most circuit simula-

tors.

While the extension of the single-line model to two

coupled lines is fairly simple, the generalization to more

than two coupled lines is not straightforward. This topic

has been addressed by several authors [2], [4]-[7] and

different simulation models were presented. All of these

models require the use of particular circuit models not

allowed in general-purpose Jcircuit simulators such as

SPICE. Only recently in [8], a SPICE model for multiple

coupled transmission lines has been presented.

The aim of this paper is to derive from the general
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model a simplified one that can be used in a particular but

rather common setting. The parameters of this latter model

are computed in a very efficient way that requires only

simple transcendental function evaluations, as opposed to

the computation of eigenvalues and eigenvectors that are

necessary in the most general setting. Furthermore, the

assumptions that have to be verified for the simplified

model to be as accurate as the general one are commonly

satisfied when microstrip lines on multilayer printed cir-

cuit board are considered.

The paper is organized as follows. First, a mathematical

formulation of the general problem is given. Then, the

simplified model is described, the limiting assumptions are

introduced, and an algorithm to determine the model

parameters is presented. Finally, a comparison between

waveforms recorded on a real circuit and those determined

by using SPICE with the simphfied model is presented in

the last section of the paper.

II. MATHEMATICAL FORMULATION

Let us consider a set of n coupled, lossless transmission

lines. With the assumption of the transverse electromag-

netic (TEM) mode of wave propagation, the distribution of

voltages and currents along the lines is given by the

generalized telegraphists’ equations [9]

where vectors U(X, t) and i(x, t)denote voltages and cur-

rents, respectively. Superscripts x and t denote differentia-

tion of signals with respect to space and time, respectively.

Distance and time are denoted by x and t. L = [l,J] is the

per-unit-length (PUL) inductance matrix and

“=1: : n!
is the PUL capacitance matrix. The matrix C is symmetric,

diagonally dominant, positive definite [10] and such that
n

Ci, i= Ci,o+ ~ (c,, j)
;=l

J*1

where C,,. is the capacitance PUL of line i with respect to

ground, and Ci,~ is the capacitance PUL between line i
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Fig. 1. Structure of the model for n coupled lines.

and line j. The matrix L is symmetric and positive defi-

nite, with 1, , the self-inductance PUL of line i and 1,,, the

mutual inductance PUL between line i and line j.

Given a set of coupled lines, e.g., a set of rnicrostrips on

a printed circuit board, the entries of matrices L and C

can be numerically computed once the geometries of the

lines and the dielectric constant of the inhomogeneous

coupling material are given and the TEM mode is as-

sumed. Algorithms to compute these parameters are well

known and examples can be found in [11] -[13].

In the cases of common interest, e.g., connections on

printed circuit boards, the nature of the media in which

the transmission lines are embedded is such that the mag-

netic properties are not dependent on the type of dielectric

used and are equivalent to those obtained when the dielec-

tric is replaced by a vacuum. Bearing this in mind, the

values of the entries of matrix L are computed by means

of the following relation [5]:

L= LO= KOfOC; l

where CO is the capacitance matrix for the same set of

transmission lines with the dielectric replaced by a vacuum.

Let us consider now the following change of basis from

o to OJ and from i to id:

v = A4vvd (2a)

i = bfrid (2b)

where ilfr and itfv are n by n constant matrices.

Substituting (2) into (l), we obtain

where L~ and Cd are given by

Ld = ill; lLM1 (4a)

cd= iW1- ~cil!fv. (4b)

Due to the particular structure of the physical problem, a

number of results can be proven.

Proposition 1: Matrices LC and CL share the same

eigenvalues Az(i =1,2,. . . . n). The corresponding right ei-

genvector matrices, J4v and ikff, satisfy the following

equation:

~; 1= ~;. (5)

v=. IO,t) k ILtl

,,(50 - f~l(’qtl I,j, ((,t] 1
n 0

VI(O,tl

(“ ““”’’+vd~’’[iztd’b)vb+v’’’’’+’s= ;’:

0 I I I I 0
GND

Fig. 2. Detoiled model for the i th line.

Matrices Cd, L~, (LC)d, and (cL)d given b

Cd= M;CMV (6a)

Ld=M;lLIM;l]T (6b)

(Lc)d = M;’L [M;’] ‘M;CMV= L&d (6c)

(CL). = M;CMVM;lL [M;’] T= C.L~ (6d)

are diagonal in the new basis obtained by (2).

Proof A proof of (5) is given by Chang [5], while eqs.

(6) follow trivially from (4) and (5). ❑

The change of basis represented by (2) is the generaliza-

tion of the even-mode and odd-mode decomposition to the

case in which n coupled lines are considered. Equation (3)

represents a set of n decoupled lines. Each of the lines

propagates one and only one of the n propagation modes

of the system of (l). The time-delay matrix is given by

Wd = (L~C~)l’2 (7a)

while the characteristic impedance matrix is given by

Zd = (Ldcd)1’2c; l. (7b)

All the matrices in (7) are diagonal and this makes the

computation of square roots and inverses trivial. More-

over, since both Wd and Zd are diagonal matrices, the set

of n coupled lines can be represented by n single lines

with parameters Wd and Zd and simulated using the

single-line SPICE m;del. The change of basis is realized by

two transformation networks, one at each end of the

transmission lines model; these networks are identical

because of (5).

The structure of the circuit model for n coupled lines is

shown in Fig. 1, while Fig. 2 presents the detailed model

for the ith line. The parameters for the circuit are obtained

by the following algorithm:

Algorithm:

Step 1: Given the number of lines n, compute the

eigenvalues of matrix LC, A,.
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Compute the matrix iMv = [Mij] of right ei-

genvectors of LC.
i=o.

i = i +1; compute the control law for each

dependent source of the transformation net-

work (see Fig. 2):

u,, (x, t) = ~ M,jud, (x, t)– Ud,(x, t) (8a)
j-l

i,i(X, t) = ~ kfijid,(X, t)–id, (.x, t) (8b)
i-l

where either x = O or x = 1,1 being the length

of the line.

Compute the characteristic impedance Zd, and

the time delay per unit length W~, of the i th

line by (7).

if i < n go to Step 4; else stop.
9

Equations (8) define the control laws for the VCVS and

CCCS that implement the transformation network.

III. SIMPLIFIED MODEL

To compute the transformation networks and the

parameters of the system of n coupled transmission lines,

the eigenvalues and the right eigenvectors of matrices LC

and CL have to be computed. The complexity of the

computation necessary to determine the model can be

greatly reduced if a set of assumptions on the structure of

the coupled lines is satisfied.

Assumption 1: The characteristics of the medium are

such that both the capacitance matrix C and the induc-

tance matrix L are n-by-n tridiagonal matrices, where n is

the number of coupled lines. 9

Assumption 1 introduces a constraint on the characteris-

tics of the coupling phenomenon. In fact, the tridiagonal

structure of the matrices implies that each transmission

line is coupled directly only with the closest one to the

right and with the closest one to the left. This assumption

is valid in a wide variety of practical cases, in particular

when the transmission lines are microstrips on a multilayer

printed circuit board where every signal plane is sand-

wiched between two ac ground planes. Obviously, boundary

effects are present and, in pti titular, the capacitance of

the extreme transmission lines is smaller than those of the

others.

Assumption 2: The lines are identical and equally spaced

and side effects are negligible, 1 i.e.,

C’, i=c, i=~,. ... n

li,i = 1, i=l,. ... n

Ci, j= cm, j=i–l, i+l, i=2,. ..,l–l

C1,2= Cn,n–l= cm

ii,, =lm, j=i-l, i+l, i=2,. ..,l–l

11,2=ln, n_1=lm.

1If rrdcrostrip lines on multilayer printed circuit board are considered,
the capacity of each line with respect to ground is about one order of
magnitude bigger than the capacity between lines; therefore, side effects
can be neglected.

These assumptions imply that both L and C are tridiag-

onal and symmetric Toeplitz matrices. Matrices of this

form have a set of very interesting properties that allow the

eigenvalues and the eigenvectors to be determined in an

efficient manner that requires only cosine function evalua-

tions.

All the required results related to Toeplitz matrices will

be presented as propositions. Proofs will be omitted

whenever a direct reference is available.

Proposition 2: Let T be a matrix of order n defined as

follows:

tz,j=l, j=i–l, i+l, i=2, -.., l–l (9a)

tl,z=tn,n–l=l (9b)

ti,j = o, otherwise. (9C)

The characteristic polynomial of T, +.(p), is given by the

following recursive equation:

@k(P) =Pok-l(P)-4k-2(P)> k=2,... , n (10)

with the initial conditions

Ah) ‘1 (ha)

41( P)=P. (llb)

ProoJ A proof of the proposition is given in [14].

The particular structure of T, given by (9) allows for the

computation of its eigenvalues without solving the char-

acteristic equation

det(M-T) =~~(p) =0

as stated in the following proposition.

Proposition 3: The solutions to the equation

4%(P)=0

where +.(p) is given by (10) and (11), are given by

iv
/_li = –2cos — i=l,. ... n. (12)

n+l’

Proofi A proof of the proposition is given in [15]. ■

Matrix T plays a crucial role in determining the eigen-

values of Toeplitz matrices that are also symmetric and

tridiagonal.

Proposition 4: Let A be a symmetric, tridiagonal Toep-

litz matrix. The eigenvalues of A are given by

Ai(A)=a+pi(T)b (13)

where a is the element on the main diagonal of A, b is the

element on the secondary diagonal of A, and p,(T) are the

eigenvalues of matrix T.

Proofi The proof consists of showing that the eigen-

values of A can be expressed as in (13). Let us consider the

following expression for A:

A= Ia+lb.

Writing the characteristic equation for A, we obtain

det(XI– A) =det((A–a)l–bT) =0. (14)

Since by assumption

b+O
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by the properties of determinants, (14) can be rewritten as

~det (A-a)l_T no

( b )

from which (13) follows immediately. ❑

Proposition 4 states that eigenvalues of every symmetric,

tridiagonal Toeplitz matrix can be computed starting from

the eigenvalues of matrix T by evaluation of (13). Further-

more, solutions of the characteristic equation have to be

computed only once for all matrices of a given order.

The particular features of tridiagonal, symmetric Toep-

litz forms are again helpful in the computation of eigen-

vectors necessary to diagonalize a matrix.

Proposition 5: The matrix M of right eigenvectors of T

is given by

~ = il.l(P,(T))
~J

i,~=l,.

Yj ‘

where the normalizing factors

‘;=i;l(+Z-hJ(T)))2

are introduced to obtain

n (15a)

(15b)

(15C)

ProoJ A proof of the proposition is given in [14].

Proposition 6: Matrices A and T have the same eigen-

vectors.

Proofi Let x be a right eigenvector of A. From the

definition of eigenvector and from Proposition 4 follows

((A-a)

)(AI- A)x=b b I-T x=O.

Therefore

(pI-z-)x=o

which completes the proof. ■

Propositions 5 and 6 are crucial because they state two

extremely important facts. The first one is that, given a

matrix that is symmetric, tridiagonal, and Toeplitz, the

eigenvector matrix M can be determined without solving

any system of equations. The second is that the transfor-

mation matrix is related only to the order of the matrix to

be transformed and not to values of its nonzero elements.

From this latter remark follows the useful result below.

Proposition 7: Since L and C are symmetric, tridiago-

nal, Toeplitz matrices, the same transformation matrix ill

diagonalizes both L and C, as a consequence, it follows
that

Jf-~L~&f-@f = ~-~LC~

and then ill diagonalizes LC also.

Proofi The proof follows immediately from Proposi-

tion 6. 9

The algorithm described in Section II is now simplified

as follows:

Simpl~ied Algorithm:

Step 1: Given the number of lines n, compute the

eigenvalues of T by (12).

Step 2: Compute the matrix M of right eigenvectors

of T by (15).

Step 3: i=O.

Step 4: i = i +1; compute the control law for each

dependent source (see fig. 2)

u,t(x, t) = ~ MijU~, (X, t)– Ud,(x, t) (16a)
j-l

i~r(x, t) = ~ M,Ji~, (x, t)– i~[(x, t) (16b)
j-l

where either x = O or x = 1, 1 being the length

of the line.

Step 5: Compute the characteristic impedance Zd, and

the time delay W~, of line i

‘.=(%I’T’ (17a)

w~r= [( Z+ I-L(T) lm)(C-P, (T)%) ]l’2. (17b)

Step 6: if i < n go to Step 4; else stop.

Remark 1: The computation of Step 1 and of Step 2

depends only on the number of lines and so is executed

only once; as a consequence, the model for different sets

of n lines requires the computation of Step 5 only.

Remark 2: If n =2, the model presented here reduces

to the usual model for two coupled lines. In particular, the

odd mode is propagated by the first line while the even

mode is propagated by the second one. It is important to

note that in this case Assumption 1 and Assumption 2
have no effect since both lines are boundary lines and

hence no approximation is used. ■

Parameters 1, 1~, c, and cm have to be determined either

by measurements’ or by computations starting from the

geometrical dimension of the lines. For the sake of simplic-

ity, the second approach has been followed.

A computer program to evaluate electrical parameters

and to determine the model of coupled lines based on the
above Simplified Algorithm has been designed. The pro-

gram computes 1, 1~, c, and cm starting from the geometri-

cal dimensions of the microstrip lines using the algorithms

presented in [11], and [12]. Then, the transmission-line
parameters W~,, Zdz, and the transformation networks are

computed with (16) and (17). The output is generated

using the SPICE input syntax and it is stored in a file as a

SPICE subcircuit model.

2The procedure is rather delicate since the measurements are error-
prone.
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Fig. 4. Geometry of three coupled lines,

IV. EXAMPLE OF APPLICATION

The model presented in the previous section has been

applied to study three coupled lines on a multilayer printed

circuit board. The circuit, shown in Fig. 3, represents a

simplified version of a data bus. In Fig. 4 the geometrical

chtqacteristics of microstrips are listed.

The simplified model was simulated with SPICE and the

results were compared with two photographs taken with a

500-MHz oscilloscope. Figs. 5 and 6 show simulated and

measured node voltages Ul(t) and Uz(t) when a rising step

(a) and a falling step (b) are applied by the voltage source

J&.

The agreement between the measured and simulated

voltages is very good; the maximum difference between the

two voltages is less than 1 percent. The time required to

simulate the circuit was about 20 tin of CPU time on a

Honeywell L 66/80 computer for each transient, while the

time required to determine the model parameters was less

than 1 S.

A comment is in order with respect to HSPICE [16], the

particular version of SPICE used to perform the simula-

tion. When a transmission line is simulated in the time

domain, if the ljne is not perfectly matched at both ends,

reflection waves are generated every Wd t@e units. Since

the trartsnussion line is lossless, no distortion or attenua-

tion is. introduced; this means that if the input signal

presents a breiik point3 another one will be created every

time a reflection occurs. As a consequence, the resulting

time step can be extremely small. This effect is even more

etident when coupled lines tie simulated. In t@ case,

every line has its ow Wd; hence, in general, bre@ points

occur at differefit times for each line. To handle these

problems, HSPICE has a modified algorithm to control the

generation of break points and the computation of the

time step in the vicinity of break points [17]. In piirticular,

when transmission lines are simulated, only a limited num-

3A break point is a time point in which a waveform undergoes a sharp
change in its first time derivative. In coincidence with such points, SPICE
reduces its time step so that the next time step will be coincident with the
break point [1].
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Fig. 5. Node voltages obtained by SPICE.

ber of reflections are considered for the generation of

break points. Furthermore, the minimum tie step around

the break point is controlled adaptively by the user so that

a good tradeoff betwqm accuracy &rtd speed is achieved.

Several runs were perfoqned to test the accuracy of the

Simulation with, different time step control strategies and

no si~ficaiit differences in the waveform were detected.

In coritrast, several CPU hours were required, to complete

the si@dation of’ the mine test case with ~e standtid,,
control strategy. ,,

Finally, the measured values of capacitances Cii and Ci~

with i + j, i, j = 1,2,3, are presented below together with

the corresponding computed values (listed in parentheses)

Cll = Clo + C12 = 68.8 pF/m (68.6 pF/m)’

C22= Czo+ Czl + cz~ = 75.5 pF/m (76.6 pF/m)

C33= C30+ C3Z= 68.8 pF/m (68.6 pF\m)

C12= C21= C23= C3Z= 6.7 pF/m (8.0 pF/m).

The “measured values of the capacitances were obtained by
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Fig. 6. Node voltages obtained by measurements.

solving the following system of equations:

Clo + cl~ = c~,

Cl* + C20+ C*3= c~2

C23– C12= o

where c~, is the capacitance measured at one end of line 1

when line 2 is grounded, and c~z is the capacitance

measured at one end of line 2 when both line 1 and line 3

are grounded. The computed values of capacitances were

determined by means of the program described at the end

of the previous section. The results show an order of

magnitude of difference between ciO and Cij, i # j, which

proves that Assumption 2 is fulfilled to a good approxima-

tion.

A number of tests are presently in progress to check the

agreement between the results predicted by the program

and measurements for an extended range of microstrip

dimensions.

V. CONCLUSIONS

A simplified simulation model for a set of coupled lines

has been presented. The construction of the model is based

on two assumptions on the characteristics of the coupling

phenomenon. The assumptions are usually satisfied for

microstrip lines constructed on multilayer printed circuit

boards.

To determine the model parameters, only function

evaluations are required. The transformation networks

necessary at both ends of the model are dependent on the

number of coupled lines only and can be determined once.

Only two parameters for each line have to be computed to

simulate sets of coupled lines with different parameters.

The test case presented shows good agreement between

the results obtained with the simulation and those ob-

tained by testing a real circuit with a high-resolution

oscilloscope. The errors in voltages were less than 1 per-

cent.
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